JPEG

  • JPEG ([ˈdʒeɪpɛɡ]) ist die gebräuchliche Bezeichnung für die 1992 vorgestellte Norm ISO/IEC 10918-1 bzw. CCITT Recommendation T.81, die verschiedene Methoden der Bildkompression beschreibt. Die Bezeichnung „JPEG“ geht auf das Gremium Joint Photographic Experts Group zurück, das die JPEG-Norm entwickelt hat.

    1 JPEG


    JPEG ([ˈdʒeɪpɛɡ]) ist die gebräuchliche Bezeichnung für die 1992 vorgestellte Norm ISO/IEC 10918-1 bzw. CCITT Recommendation T.81, die verschiedene Methoden der Bildkompression beschreibt. Die Bezeichnung „JPEG“ geht auf das Gremium Joint Photographic Experts Group zurück, das die JPEG-Norm entwickelt hat.
    JPEG schlägt verschiedene Komprimierungs- und Kodierungsmethoden vor, darunter verlustbehaftete und verlustfreie Kompression, verschiedene Farbtiefen sowie sequenzielle oder progressive Modi (normaler Bildaufbau bzw. allmähliche Verfeinerung). Weithin verbreitet ist nur die verlustbehaftete Komprimierung bei sequenziellem oder progressivem Modus und 8-Bit-Farbkanälen.
    Die JPEG-Norm beschreibt lediglich Bildkompressionsverfahren, legt aber nicht fest, wie die so entstandenen Daten gespeichert werden sollen. Gemeinhin werden mit „JPEG-Dateien“ oder „JPG-Dateien“ Dateien im Grafikformat JPEG File Interchange Format (JFIF) bezeichnet. JFIF ist jedoch nur eine Art, JPEG-Daten abzulegen; SPIFF und JNG sind weitere, wenn auch wenig gebräuchliche, Möglichkeiten.



    2 Die JPEG-Komprimierung



    Die JPEG-Norm definiert 41 verschiedene Unterdateiformate, von denen aber meist nur eines unterstützt wird (und welches auch fast alle Anwendungsfälle abdeckt).
    Die Kompression erfolgt durch das Anwenden mehrerer Verarbeitungsschritte, von denen vier verlustbehaftet sind.


    • Farbraumumrechnung vom (meist) RGB-Farbraum ins YCbCr-Farbmodell (nach CCIR 601). (verlustbehaftet)
    • Tiefpassfilterung und Unterabtastung der Farbabweichungssignale Cb und Cr (verlustbehaftet).
    • Einteilung in 8×8-Blöcke und diskrete Kosinustransformation dieser Blöcke (theoretisch verlustfrei, durch Rundungsfehler aber verlustbehaftet).
    • Quantisierung (verlustbehaftet).
    • Umsortierung.
    • Entropiekodierung.

    Die Datenreduktion erfolgt durch die verlustbehafteten Verarbeitungsschritte in Zusammenwirken mit der Entropiekodierung.
    Kompressionen bis etwa 1,5–2 Bit/Pixel sind visuell verlustfrei, bei 0,7–1 Bit/Pixel sind noch gute Ergebnisse erzielbar, unter 0,3 Bit/Pixel wird JPEG praktisch unbrauchbar, das Bild wird zunehmend von unübersehbaren Kompressionsartefakten (Blockbildung, stufige Übergänge, Farbeffekte an Graukeilen) überdeckt. Der Nachfolger JPEG 2000 ist wesentlich weniger für diese Art von Artefakten anfällig.
    Sieht man als Quellformat 24-Bit-RGB-Dateien an, erhält man Kompressionsraten von 12 bis 15 für visuell verlustfreie Bilder und bis zu 35 für noch gute Bilder. Die Qualität hängt aber neben der Kompressionsrate noch von der Art der Bilder ab. Rauschen und regelmäßige feine Strukturen im Bild verringern die maximal mögliche Kompressionsrate.
    Der JPEG Lossless Mode zur verlustfreien Kompression verwendet ein anderes Verfahren (prädiktiver Koder und Entropiekodierung).



    3 Die JPEG-Dekodierung



    Die Dekompression (meist Dekodierung genannt) erfolgt invers zur Kompression:


    • Entropie-Dekodierung
    • Umsortierung
    • Requantisierung
    • Inverse Diskrete Kosinustransformation.
    • Überabtastung und Tiefpassfilterung der Farbdifferenzsignal U und V (verlustbehaftet)
    • Farbraumumrechnung vom YCbCr-Farbraum in den Zielfarbraum (meist RGB)

    Die Dekompression ist zwar (weitgehend) verlustfrei, allerdings tritt das Inverse-Dekoder-Problem auf. Aus dekodierten Daten ist es nur schwierig möglich, die ursprüngliche Datei zu rekonstruieren. Ein Dekodier-Kodier-Vorgang verändert die Datei und ist damit nicht verlustfrei, es treten wie beim analogen Überspielen Generationsverluste auf.
    Die Generationsverluste von JPEG sind allerdings vergleichsweise klein, wenn wieder die gleiche Quantisierungstabelle zum Einsatz kommt und die Blockgrenzen die gleichen sind. Bei geeigneten Randbedingungen kann man sie bei JPEG sogar vermeiden. Bei JPEG-2000 ist das nicht mehr der Fall (überlappende Transformationen, wie sie bei JPEG-2000 wie auch in der Audiodatenkompression zum Einsatz kommen, erfordern dafür utopische Rechenleistungen).



    4 Progressives JPEG



    Ein JPEG-Bild besteht aus Koeffizienten. Diese speichern keine Pixel, sondern Annäherungen des gesamten Bildinhalts eines 8×8-Bildblocks. Beim Progressive JPEG werden erst die ersten Koeffizienten jedes Bildblocks, dann die zweiten usw. der Reihe nach abgespeichert, so dass die Annäherung an das Originalbild immer besser wird.
    Wie beim Interlacing, das bei GIF angewendet wird, liegt der Zweck darin, dem Benutzer, noch bevor die gesamte Datei geladen ist, schnell ein grobes Vorschaubild zu geben. Dies ist besonders dann sinnvoll, wenn das Laden eines Bildes länger als eine halbe bis ganze Sekunde dauert bzw. man nur ein Vorschaubild benötigt. Jedoch werden große Bilder trotzdem meistens im normalen JPEG Modus zum Download angeboten.




    5 Visuelle Qualität und verwandte Formate



    Die JPEG-Kompression ist für natürliche (Raster-)Bilder entwickelt worden, wie man sie in der Fotografie oder bei computergenerierten Bildern vorfindet.
    Ungeeignet ist JPEG für


    • digitale Strichzeichnungen (z. B. Screenshots oder Vektorgraphiken), die viele hochfrequente Bildteile (harte Kanten) enthalten,
    • Schwarzweißbilder mit 1 Bit pro Bildpunkt,
    • gerasterte Bilder (Zeitungsdruck).

    Außerdem kann man mit JPEG keine transparenten Grafiken erzeugen.
    Für diese Bilder sind Formate wie GIF, PNG oder JBIG weitaus besser geeignet.
    Ein nachträgliches Heraufsetzen des Qualitätsfaktors vergrößert zwar den Speicherbedarf der Bilddatei, bringt aber verlorene Bildinformation nicht mehr zurück. Die Quantisierungstabellen können beliebig gewählt werden und sind nicht genormt. Viele Bildbearbeitungsprogramme lassen aber den Benutzer einen pauschalen Qualitätsfaktor zwischen 0 und 100 auswählen, der gemäß einer Formel in der vom JPEG-Komitee herausgegebenen JPEG-Bibliothek in eine Quantisierungstabelle umgewandelt wird. Auch bei Qualitätsfaktoren wie „100“ oder „100 %“ findet immer noch eine Quantisierung und damit ein – bei für JPEG ungeeigneten Bildern erheblicher – Qualitätsverlust statt.
    Eine JPEG-Transformation ist im Allgemeinen nicht idempotent. Das Öffnen und anschließende Speichern einer JPEG-Datei führt zu einer neuen verlustbehafteten Kompression.
    Im Profi-Bereich wird JPEG wegen der verlustbehafteten Datenreduktion eher selten verwendet. Stattdessen werden Formate eingesetzt, die verlustfrei komprimieren, ungeachtet des großen Speicherbedarfs. Beispiele sind TIFF, BMP, TGA oder PNG (Vollfarbenmodus). Eine unkomprimierte Aufnahme von 6 Megapixel erfordert bei einer Farbtiefe von 16 Bit pro Grundfarbe und 3 Grundfarben einen Speicherbedarf von 36 Mbyte, der sich bei strukturreichen, körnigen oder verrauschten Bildern durch verlustlose Kompression nur mäßig verkleinern lässt (bei detailreichen Fotos sind Kompressionsraten auf ca. 50 % üblich).
    Es ist oft möglich, die Komprimierung vorhandener JPEG-Dateien ohne weitere Verluste zu optimieren und somit die Dateigröße etwas zu verringern. Neuere Versionen einiger Packprogramme sind in der Lage, JPEG-Bilder ohne weitere Verluste um bis zu 25 % zu komprimieren.
    Die Bewegtbildkompressionsverfahren MPEG-1 (eng verwandt mit dem Codec Motion JPEG) sowie MPEG-2 bauen auf dem JPEG-Standard auf. Ein Nachfolgeprojekt von JPEG zur Speicherung von Bildern ist JPEG 2000, das über eine bessere Kompression und viele sinnvolle Eigenschaften verfügt, sich aber zumindest bis jetzt nicht in breitem Maße durchsetzen konnte. Ein weiteres potentielles Nachfolgeformat ist JPEG XR, das auf dem von Microsoft entwickelten Format HD Photo basiert, das jedoch bisher ebenfalls nur vereinzelt unterstützt wird.












Teilen